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According to present Opinion, fracture is a process that develops in 
time. Fracture depends on the character of the loads, which may be of a 
constant, csclic, impulsive or mixed type. Here we shall limit ourselves 
to the analysis of fracture under the action of constant loads. 

From the very beginning, there are a great number of different defects 
distributed throughout the body, which are embryonic cracks. During load- 
ing, cracks arise in the weakened spots of the body. The simplest case 
of a straight isolated crack in a plane homogeneous field of an elastic 
body was studied by many authors - Griffith [ 1 I, Drowan 12 I, Irwin 13 It 
and others. General results were recently obtained in the papers by 
Barenblatt [ 4-8 1. During the widening of a crack, some elastic energy 
is released which during a slow crack opening is spent on the work of 
the surface forces and the formation of the edges of the crack. In 16 1 
it was shown that the surface energy (for brittle materials) or the 
plastic surface work (for metals) is related to the cohesion modulus K. 
The above-mentioned papers are concerned with the analysis of equilibrium 
cracks, i.e. cracks whose dimensions remain unchanged under a given load. 
A growth of such cracks is only possible with an increase of the load. 

Numerous observations, however, show that with a fixed load cracks do 
grow. This circumstance is one of the main reasons for the dependence of 
the ultimate strength on time. The latter problem (that of the so-called 
sustained strength) is of great practical importance, snd is presently 
attracting the attention of many scientists and engineers. In the present 
paper an attempt is being made to develop an analysis of crack growth 
within the framework of continuum mechanics. 

1. F~d~ental considerations. According to observations, at 
first there occurs R slow growth of a crack. ‘Ihis stage makes up the 
principal part of the total life time of the element. Subsequently, there 
occurs an accelerated growth of the crack, which in the final stage goes 
into a propagation of the crack with a velocity comparable to sound 
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velocity. It should be noted also that the problems of the development 
of a crack in a real body are connected with local properties of its 
structure and in many respects remain unclear. Nevertheless, it seems 
that some general rules of crack development in the first and second 
stages can be set forth, disregarding structural details. 

In an ideally elastic body, the development of a crack is impossible 
with a fixed load. Thus, the growth of a crack must be related to elastic 
imperfections, in particular to the appearance of flow in solid bodies. 

Let us study at first the case of linear creep, corresponding to the 
model of a Maxwell body. In this medium, the strain rates (,, [ ,.*.,)71cz 
are related to the stress components ox, o y’ ***t rzz by the re ations I 

where ~1 is the viscosity coefficient, G is the shear modulus, and u is 
the mean pressure. For simplicity, it was assumed that Poisson’s ratio 
equals one-half. 

Following Barenblatt [ 4 I, we shall distinguish between two regions 
in the crack: the internal region, where the opposite edges of the crack 
have separated and there is no attraction between them, and the end 
region, where there exist cohesion forces. ‘lhe end region d (Fig. 1) is 
small in comparison to the internal region (hypothesis I). lhe configu- 
ration of the edges of the crack in the end region does not depend on 
the acting loads and for a given material is always the same under given 
conditions (hypothesis II). 

We shall also assume that the condition of finiteness of stresses at 
the ends of the crack and the smoothness of the closure of its edges is 
maintained (hypothesis III). 

Let us study, for definiteness, the states of stress and strain of an 
infinite plate with a straight crack running from x = a to x = b. ‘Ihe 

stress distribution in an elastic plate with given loads does not depend 
on the elastic modulus, with arbitrary values of abscissas of the crack 
ends a, b. Then the same stress field, according to Volterra’s principle 

[9 I, will exist also in a linear visco-elastic plate. 

Ibis remains the case also with a change of some dimensions of the 
body (for instance, the crack length) with time. lhe displacement in a 
visco-elastic plate is equal to 

u=u,+ G/p u,dt 
c 
0 

(1.2) 
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where u,, is the displacement in the elastic state. With fixed dimensions 
u. does not depend on time, and then 

u = u. (1 + ; t) (1.3) 

Since the crack configuration in the end 
region is preserved, relation (1.3) charac- 
terizes the rate of opening of this region, 
if t is chosen to be a short time after the 
arrival of the crack at a given point. 

Thus, in a visco-elastic body the edges 
of a crack spread apart with time, whereas 
the ends close smoothly. 

Fig. 1 

As shown by I?arenblatt [4,5 I, the size of the crack in an elastic 
body is given by the relation 

(1.4) 

where A is the load parameter. Function a(Z) depends on the type of 
crack and is related essentially to the formation of a given crack. 'lbe 
cohesion modulus K is equal to 

(1.5) 

Here the function F(s) characterizes the distribution of the tensile 
stresses, which depend on the cohesion forces. In the elastic body the 
distance between the edges of the crack does not change for a given load. 

Relations (1.4) and (1.5), which express the finiteness condition of 
the stresses at the ends of the crack, hold also in the case of the pre- 
sently studied linear visco-elastic body. As was stated above, however, 
the edges of the crack move apart with time. lhus, with a fixed loading 
and a fixed crack size the distance between its edges also increases at 
the end zone. ibis should be related, generally speaking, to a decrease 

of K due to a decrease of the cohesion forces. Together with this a 
widening of the crack takes place, which leads to a re-establishment of 
the previous value of K, etc. 

Equation (1.5) essentially represents the equilibrium condition. 'lhe 
rate of decrease of K with a fixed size of crack is characterized by the 
value of the local derivative at initial time 

(dK/ Wf=, 
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‘Ibis change is compensated by a corresponding change of the left-hand 
side, i.e. 

(1.6) 

Let us study some formulations concerning the derivative on the right- 
hand side. As it was emphasized by Berenblatt [4,1, the shape of the end 
region corresponds to that of the highest possible resistance. ‘Ihe sepa- 
ration of the edges in the end region leads to a decrease of the resist- 
ance, and for short times (for a crack of fixed size) we have 

K=(K),+++... (1.7) 

where the coefficient K > 0 can be regarded as some new material constant. 

‘Ibis characteristic will be very important from the practical point of 
view, since for considerations of the strength of the material the pre- 
sence of flaws (defects, cracks) is not as essential as their eventual 
development. Let us call K the flaw coefficient. 

‘Ibus, according to (1.6) and (1.7), we obtain 

From this we find 

cp (1) - CD (Z,) = - + --& t (1.8) 

where 22, is the size of the crack in the elastic body. Relation (1.8) 
can be also written as 

Here, and in the remainder of the paper, K is understood to be the 
value of the cohesion coefficient, as determined by Barenblatt . 

If the crack is stable t 6 1) i.e. in order to 
the crack, it is necessary to increase the load, 
dl/dt > 0, i.e. the crack grows with time. 

increase the size of 
@‘(I) < 0 and then 

(1.9) 

If the crack is unstable, W(2) > 0 and consequently dl/dt < 0. ‘Ihis 
result should be interpreted as follows: the flow of the material in- 
troduces a disturbance into the equilibrium state and the unstable crack 
widens catastrophically. 

2. Example. As illustrations, let us study two simple examples. 
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1) A crack is formed in a plane field, caused by two equal forces P 

which act in opposite directions along a straight line. It can be easily 
seen that 15 1 

1 (1.75f 52)” Jq 
@ 6) = __ 

v/z (1 + zq’, 
(I=$) 

where 2L is the distance between the points of application of the forces. 
‘Ihe load parameter is X = P. l’he time dependence of 6 is shown in Fig. 2. 
At the initial time 4‘ = to and at time t, = Kp / K G there occurs a 
catastrophic widening of the crack. Thus, there exists a finite time of 
fracture. If the force P is smaller than the critical value, the crack 
does not appear. 

of a crack in an infinite slab of width 2L are separated 
forces P equal in magnitude and opposite in direction. 

1 

2) The edges 
by concentrated 
In this case 15 

@(E) = 

In time, the crack develops in the following 
manner. Inuring loading by a force P < Pmax an 
equilibrium crack is formed. Beyond that, it grows 
gradually, at time 

the crack becomes unstable, and there then occurs 
a rapid fracture. 

Fig. 2. 

3. Conclusion. The qualitative concept studied above is preserved 
in general also for other linear media that possess a flow property. 
Assume, for instance, that a material follows Boltzmann’s integral rela- 
tions 

E* = &(0*-G), 1 ~xy ’ G, ~G,v 

Here the operator is introduced 

(3.1) 

with an after-effect kernel M(t - s). According to Volterra’s principle, 
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the state of stress is the same as in the elastic body. 

For a short time t after the arrival of the crack at a given point in 
the end region, the displacement is equal to 

u = u. 11 -;m GM (t) z] (3.2) 

Substitute 

M”(t) =G\M(t-s)ds 
0 

After analysing an equation of the form (1.6)) we easily obtain in- 
stead of (1.9) the following relation: 

CD (I) = -& IK - XM (t)] (3.3) 

If the effect of time has the character of a negligible damped after- 
effect (i.e. P(t) + MO(=) as t + =, where M’(oD) << 1) then, after open- 
ing, the stable crack will widen for some time, but soon its development 
will stop for all practical purposes. On the other hand, with an undamped 
flow (creep) the growth of the crack does not slow down. The rate of 
growth of the crack is determined, in particular, by the character of 
the after-effect kernel. 

Some other effects can be explained by non-homogeneity and the in- 
fluence of the deformation. For instance, a creep deformation facilitates 
the appearance of cracks [ 10 I; thus the crack which approaches a given 
point in some interval of time encounters a smaller resistance. This 
effect can be taken into account by considering K and K to be functions 
of the previous creep deformation. 

‘lhe results studied above refer to linear media. For nonlinear flows 
(for instance, the case of creep in metals) the qualitative concept is 
generally maintained; however, it is difficult to develop quantitative 
characteristics, since in course of time the state of stress of the body 
can deviate considerably from the elastic state of stress. 
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